All Publications

1. J. Yoo, K. Mitman, V. Varma, et al. Numerical relativity surrogate model with memory effects and post-Newtonian hybridization. Phys. Rev. D 108, 6, p. 064027 (2023). arXiv:2306.03148.

2. S. Ma, J. Moxon, M. A. Scheel, et al. Fully relativistic three-dimensional Cauchy-characteristic matching. arXiv:2308.10361.

3. N. A. Wittek, M. Dhesi, L. Barack, et al. Worldtube excision method for intermediate-mass-ratio inspirals: scalar-field model in 3+1 dimensions. Phys. Rev. D 108, 2, p. 024041 (2023). arXiv:2304.05329.

4. N. Deppe, L. E. Kidder, S. A. Teukolsky, et al. A positivity-preserving adaptive-order finite-difference scheme for GRMHD. arXiv:2306.04755.

5. L. Pompili, A. Buonanno, H. Estellés, et al. Laying the foundation of the effective-one-body waveform models SEOBNRv5: improved accuracy and efficiency for spinning non-precessing binary black holes. arXiv:2303.18039.

6. K. Mitman, M. Lagos, L. C. Stein, et al. Nonlinearities in black hole ringdowns. Phys. Rev. Lett. 130, 8, p. 081402 (2023). arXiv:2208.07380.

7. N. L. Vu, S. Rodriguez, T. Wlodarczyk, et al. High-accuracy numerical models of Brownian thermal noise in thin mirror coatings. Class. Quantum Grav. 40, p. 025015 (2023). arXiv:2111.06893.

8. S. Ma, K. Mitman, L. Sun, et al. Quasinormal-mode filters: A new approach to analyze the gravitational-wave ringdown of binary black-hole mergers. Phys. Rev. D 106, 8, p. 084036 (2022). arXiv:2207.10870.

9. N. L. Vu. A task-based parallel elliptic solver for numerical relativity with discontinuous Galerkin methods. Universität Potsdam:10.25932/publishup-56226 (2022).

10. N. Deppe, F. Hébert, L. E. Kidder, et al. Simulating magnetized neutron stars with discontinuous Galerkin methods. Phys. Rev. D 105, 12, p. 123031 (2022). arXiv:2109.12033.

11. L. M. Zertuche, K. Mitman, N. Khera, et al. High Precision Ringdown Modeling: Multimode fits and BMS frames. Phys. Rev. D 105, 10, p. 104015 (2022). arXiv:2110.15922.

12. S. Ma, Q. Wang, N. Deppe, et al. Gravitational-wave echoes from numerical-relativity waveforms via spacetime construction near merging compact objects. Phys. Rev. D 105, 10, p. 104007 (2022). arXiv:2203.03174.

13. N. L. Vu, H. P. Pfeiffer, G. S. Bonilla, et al. A scalable elliptic solver with task-based parallelism for the SpECTRE numerical relativity code. Phys. Rev. D 105, 8, p. 084027 (2022). arXiv:2111.06767.

14. N. L. Fischer and H. P. Pfeiffer. Unified discontinuous Galerkin scheme for a large class of elliptic equations. Phys. Rev. D 105, 2, p. 024034 (2022). arXiv:2108.05826.

15. J. Moxon, M. A. Scheel, S. A. Teukolsky, et al. The SpECTRE Cauchy-characteristic evolution system for rapid, precise waveform extraction. Submitted to Phys. Rev. D (2021). arXiv:2110.08635.

16. M. Düll, N. L. Fischer, B. M. Schaefer, and F. P. Schuller. Symmetric gravitational closure. arXiv:2003.07109.

17. T. Vincent, H. P. Pfeiffer, and N. L. Fischer. hp-adaptive discontinuous Galerkin solver for elliptic equations in numerical relativity. Phys. Rev. D 100, 8 (2019). arXiv:1907.01572.

18. M. Boyle, D. Hemberger, D. A. B. Iozzo, et al. The SXS collaboration catalog of binary black hole simulations. Classical and Quantum Gravity 36, 19, p. 195006 (2019). arXiv:1904.04831.

19. V. Kuznetsov, N. L. Fischer, and Y. Guo. The Archive Solution for Distributed Workflow Management Agents of the CMS Experiment at LHC. Computing and Software for Big Science 2, 1 (2018). arXiv:1801.03872.