Computational physicist at Caltech in numerical relativity, computational astrophysics, and high-performance computing. Developing the next generation of massively parallel simulations of black holes. Also passionate about software development, design, data visualisation and teaching.

I changed my last name from Fischer to Vu in 2022.

Employment

2022 to date
Burke Prize Postdoctoral Fellow, California Institute of Technology, Pasadena, California

Sherman Fairchild Postdoctoral Scholar Research Associate in Theoretical Astrophysics

Education

2018—2022
Ph.D. in Physics, Max-Planck-Institute for Gravitational Physics Potsdam, Germany

Numerical simulations of compact object binaries with the Simulating eXtreme Spacetimes (SXS) collaboration. Core developer of the SpECTRE numerical relativity code. Advisor: Prof. Harald P. Pfeiffer.

2012—2017
B.Sc. & M.Sc. in Physics, Heidelberg University

Core specialization in General Relativity and Theoretical Astrophysics.

Scholarships

2019
High-Performance Computing Summer School, Kobe, Japan
2018
Les Houches Summer School on Gravitational Waves, France
2017 and 2018
2017
Research invitation, Yukawa Institute for Theoretical Physics, Kyoto, Japan
2016
CERN Summer Student Programme, Geneva, Switzerland
CERN Summer Student Programme
2015
Winter School on Gravity and Light, Johannes Kepler University Linz, Austria
2014
Research Internship in Complexity Science, University of Calgary, Canada

Teaching & Employment

2019—2020
Teaching Assistant in Astrophysics, Potsdam University
  • Multi-messenger Astronomy (2020)
  • Gravitational Wave Astrophysics (2019)
2014 to date
Teaching Assistant in Theoretical Physics, Heidelberg University
  • General Relativity (2017)
  • Quantum Mechanics (2016)
  • Electrodynamics and Special Relativity (2015/16)
  • Analytical Mechanics and Thermodynamics (2015)
  • Mechanics and Mathematical Methods (2014/15)
2015—2016
Python Introductory Course, Heidelberg University
Python Introductory Course
2013-2017
Lectures on software development for iOS, Heidelberg University
Lectures on iOS App Development
2013—2014
Software development for neuromorphic hardware, Heidelberg University

Publications

  1. Re, Mitman, Stein, Scheel, et al. (2025). Modeling the BMS transformation induced by a binary black hole merger. Submitted to Phys. Rev. D. arXiv:2503.09569.
  2. Mitman, Pretto, Siegel, Scheel, et al. (2025). Probing the ringdown perturbation in binary black hole coalescences with an improved quasi-normal mode extraction algorithm. Submitted to Phys. Rev. D. arXiv:2503.09678.
  3. Deppe, Heisenberg, Kidder, Maibach, et al. (2025). Signatures of Quantum Gravity in Gravitational Wave Memory. Submitted to Phys. Rev. D. arXiv:2502.20584.
  4. Gao, Cook, Kidder, Pfeiffer, et al. (2025). The robustness of extracting quasinormal mode information from black hole merger simulations. Submitted to Phys. Rev. D. arXiv:2502.15921.
  5. Amicis, Rüter, Carullo, Albanesi, et al. (2024). Late-time tails in nonlinear evolutions of merging black holes. Submitted to Phys. Rev. D. arXiv:2412.06887.
  6. Ma, Scheel, Moxon, Nelli, et al. (2024). Merging black holes with Cauchy-characteristic matching: Computation of late-time tails. Submitted to Phys. Rev. D. arXiv:2412.06906.
  7. Giesler, Ma, Mitman, Oshita, et al. (2024). Overtones and Nonlinearities in Binary Black Hole Ringdowns. Submitted to Phys. Rev. D. arXiv:2411.11269.
  8. Deppe, Heisenberg, Inchauspé, Kidder, et al. (2024). Echoes from Beyond: Detecting Gravitational Wave Quantum Imprints with LISA. Submitted to Phys. Rev. Lett. arXiv:2411.05645.
  9. Wittek, Barack, Pfeiffer, Pound, et al. (2024). Relieving scale disparity in binary black hole simulations. Submitted to Phys. Rev. Lett. arXiv:2410.22290.
  10. Lovelace, Nelli, Deppe, Vu, et al. (2025). Simulating binary black hole mergers using discontinuous Galerkin methods. Class. Quant. Grav. 42, 3, p. 035001. arXiv:2410.00265.
  11. Ma, Nelli, Moxon, Scheel, et al. (2025). Einstein-Klein-Gordon system via Cauchy-characteristic evolution: Computation of memory and ringdown tail. Class. Quant. Grav. 42, 5, p. 055006. arXiv:2409.06141.
  12. Zertuche, Stein, Mitman, Field, et al. (2024). High-Precision Ringdown Surrogate Model for Non-Precessing Binary Black Holes. arXiv:2408.05300.
  13. Lara, Pfeiffer, Wittek, Vu, et al. (2024). Scalarization of isolated black holes in scalar Gauss-Bonnet theory in the fixing-the-equations approach. Phys. Rev. D 110, 2, p. 024033. arXiv:2403.08705.
  14. Deppe, Foucart, Bonilla, Boyle, et al. (2024). Binary neutron star mergers using a discontinuous Galerkin-finite difference hybrid method. Class. Quant. Grav. 41, 24, p. 245002. arXiv:2406.19038.
  15. Nee, Lara, Pfeiffer, and Vu (2025). Quasistationary hair for binary black hole initial data in scalar Gauss-Bonnet gravity. Phys. Rev. D 111, 2, p. 024061. arXiv:2406.08410.
  16. Clarke, Isi, Lasky, Thrane, et al. (2024). Toward a self-consistent framework for measuring black hole ringdowns. Phys. Rev. D 109, 12, p. 124030. arXiv:2402.02819.
  17. Zhu, Ripley, Pretorius, Ma, et al. (2024). Nonlinear effects in black hole ringdown from scattering experiments: Spin and initial data dependence of quadratic mode coupling. Phys. Rev. D 109, 10, p. 104050. arXiv:2401.00805.
  18. Mitman, Boyle, Stein, Deppe, et al. (2024). A Review of Gravitational Memory and BMS Frame Fixing in Numerical Relativity. Class. Quant. Grav. 41, 22, p. 223001. arXiv:2405.08868.
  19. Chen, Boyle, Deppe, Kidder, et al. (2024). Improved frequency spectra of gravitational waves with memory in a binary-black-hole simulation. Phys. Rev. D 110, 6, p. 064049. arXiv:2405.06197.
  20. Vu (2024). Discontinuous Galerkin scheme for elliptic equations on extremely stretched grids. Phys. Rev. D 110, 8, p. 084062. arXiv:2405.06120.
  21. Zhu, Siegel, Mitman, Isi, et al. (2025). Black Hole Spectroscopy for Precessing Binary Black Hole Coalescences. Phys. Rev. D 111, 6, p. 064052. arXiv:2312.08588.
  22. Ma, Moxon, Scheel, Nelli, et al. (2024). Fully relativistic three-dimensional Cauchy-characteristic matching for physical degrees of freedom. Phys. Rev. D 109, 12, p. 124027. arXiv:2308.10361.
  23. Deppe, Kidder, Teukolsky, Bonilla, et al. (2023). A positivity-preserving adaptive-order finite-difference scheme for GRMHD. Class. Quantum Grav. 40, p. 245014. arXiv:2306.04755.
  24. Boschini, Gerosa, Varma, Armaza, et al. (2023). Extending black-hole remnant surrogate models to extreme mass ratios. Phys. Rev. D 108, 8, p. 084015. arXiv:2307.03435.
  25. Yoo, Mitman, Varma, Boyle, et al. (2023). Numerical relativity surrogate model with memory effects and post-Newtonian hybridization. Phys. Rev. D 108, 6, p. 064027. arXiv:2306.03148.
  26. Wittek, Dhesi, Barack, Pfeiffer, et al. (2023). Worldtube excision method for intermediate-mass-ratio inspirals: scalar-field model in 3+1 dimensions. Phys. Rev. D 108, 2, p. 024041. arXiv:2304.05329.
  27. Pompili, Buonanno, Estellés, Khalil, et al. (2023). Laying the foundation of the effective-one-body waveform models SEOBNRv5: improved accuracy and efficiency for spinning non-precessing binary black holes. Phys. Rev. D 108, 12, p. 124035. arXiv:2303.18039.
  28. Vu, Rodriguez, Wlodarczyk, Lovelace, et al. (2023). High-accuracy numerical models of Brownian thermal noise in thin mirror coatings. Class. Quantum Grav. 40, p. 025015. arXiv:2111.06893.
  29. Mitman, Lagos, Stein, Ma, et al. (2023). Nonlinearities in black hole ringdowns. Phys. Rev. Lett. 130, 8, p. 081402. arXiv:2208.07380.
  30. Ma, Mitman, Sun, Deppe, et al. (2022). Quasinormal-mode filters: A new approach to analyze the gravitational-wave ringdown of binary black-hole mergers. Phys. Rev. D 106, 8, p. 084036. arXiv:2207.10870.
  31. Mitman, Stein, Boyle, Deppe, et al. (2022). Fixing the BMS frame of numerical relativity waveforms with BMS charges. Phys. Rev. D 106, 8, p. 084029. arXiv:2208.04356.
  32. Vu (2022). A task-based parallel elliptic solver for numerical relativity with discontinuous Galerkin methods. Universität Potsdam:10.25932/publishup-56226.
  33. Deppe, Hébert, Kidder, Throwe, et al. (2022). Simulating magnetized neutron stars with discontinuous Galerkin methods. Phys. Rev. D 105, 12, p. 123031. arXiv:2109.12033.
  34. Zertuche, Mitman, Khera, Stein, et al. (2022). High Precision Ringdown Modeling: Multimode fits and BMS frames. Phys. Rev. D 105, 10, p. 104015. arXiv:2110.15922.
  35. Ma, Wang, Deppe, Hébert, et al. (2022). Gravitational-wave echoes from numerical-relativity waveforms via spacetime construction near merging compact objects. Phys. Rev. D 105, 10, p. 104007. arXiv:2203.03174.
  36. Vu, Pfeiffer, Bonilla, Deppe, et al. (2022). A scalable elliptic solver with task-based parallelism for the SpECTRE numerical relativity code. Phys. Rev. D 105, 8, p. 084027. arXiv:2111.06767.
  37. Moxon, Scheel, Teukolsky, Deppe, et al. (2023). SpECTRE Cauchy-characteristic evolution system for rapid, precise waveform extraction. Phys. Rev. D 107, 6, p. 064013. arXiv:2110.08635.
  38. Fischer and Pfeiffer (2022). Unified discontinuous Galerkin scheme for a large class of elliptic equations. Phys. Rev. D 105, 2, p. 024034. arXiv:2108.05826.
  39. Vincent, Pfeiffer, and Fischer (2019). hp-adaptive discontinuous Galerkin solver for elliptic equations in numerical relativity. Phys. Rev. D 100, 8. arXiv:1907.01572.
  40. Boyle, Hemberger, Iozzo, Lovelace, et al. (2019). The SXS collaboration catalog of binary black hole simulations. Class. Quantum Grav. 36, 19, p. 195006. arXiv:1904.04831.
  41. Düll, Fischer, Schaefer, and Schuller (2020). Symmetric gravitational closure. arXiv:2003.07109.
  42. Kuznetsov, Fischer, and Guo (2018). The Archive Solution for Distributed Workflow Management Agents of the CMS Experiment at LHC. Computing and Software for Big Science 2, 1. arXiv:1801.03872.

Codes

  1. Deppe, Throwe, Kidder, Vu, Hébert, Moxon, Armaza, Bonilla, Kumar, Lovelace, O’Shea, Pfeiffer, Scheel, Teukolsky, et al. SpECTRE. sxs-collaboration/spectre. Zenodo:10.5281/zenodo.4290404.
  2. Vu. dgpy. nilsvu/dgpy. Zenodo:10.5281/zenodo.5086180.
  3. Vu. gwpv. nilsvu/gwpv.