Computational physicist at Caltech with a Ph.D. in numerical relativity and gravitational-wave astronomy. Also passionate about software development, design, data visualisation and teaching.

I changed my last name from Fischer to Vu in 2022.


2022 to date
Burke Fellow, California Institute of Technology, Pasadena, California

Sherman Fairchild Postdoctoral Scholar Research Associate in Theoretical Astrophysics


Ph.D. in Physics, Max-Planck-Institute for Gravitational Physics Potsdam, Germany

Numerical simulations of compact object binaries with the Simulating eXtreme Spacetimes (SXS) collaboration. Core developer of the SpECTRE numerical relativity code. Advisor: Prof. Harald P. Pfeiffer.

B.Sc. & M.Sc. in Physics, Heidelberg University

Core specialization in General Relativity and Theoretical Astrophysics.

Master thesis in Physics Bachelor thesis in Physics


High-Performance Computing Summer School, Kobe, Japan
Les Houches Summer School on Gravitational Waves, France
2017 and 2018
Research invitation, Yukawa Institute for Theoretical Physics, Kyoto, Japan
CERN Summer Student Programme, Geneva, Switzerland
CERN Summer Student Programme
Winter School on Gravity and Light, Johannes Kepler University Linz, Austria
Research Internship in Complexity Science, University of Calgary, Canada

Teaching & Employment

Teaching Assistant in Astrophysics, Potsdam University
  • Multi-messenger Astronomy (2020)
  • Gravitational Wave Astrophysics (2019)
2014 to date
Teaching Assistant in Theoretical Physics, Heidelberg University
  • General Relativity (2017)
  • Quantum Mechanics (2016)
  • Electrodynamics and Special Relativity (2015/16)
  • Analytical Mechanics and Thermodynamics (2015)
  • Mechanics and Mathematical Methods (2014/15)
Python Introductory Course, Heidelberg University
Python Introductory Course
Lectures on software development for iOS, Heidelberg University
Lectures on iOS App Development
Software development for neuromorphic hardware, Heidelberg University


  1. H. Zhu, H. Siegel, K. Mitman, et al. Black Hole Spectroscopy for Precessing Binary Black Hole Coalescences. arXiv:2312.08588.
  2. S. Ma, J. Moxon, M. A. Scheel, et al. Fully relativistic three-dimensional Cauchy-characteristic matching. arXiv:2308.10361.
  3. N. Deppe, L. E. Kidder, S. A. Teukolsky, et al. A positivity-preserving adaptive-order finite-difference scheme for GRMHD. Class. Quantum Grav. 40, p. 245014 (2023). arXiv:2306.04755.
  4. J. Yoo, K. Mitman, V. Varma, et al. Numerical relativity surrogate model with memory effects and post-Newtonian hybridization. Phys. Rev. D 108, 6, p. 064027 (2023). arXiv:2306.03148.
  5. N. A. Wittek, M. Dhesi, L. Barack, et al. Worldtube excision method for intermediate-mass-ratio inspirals: scalar-field model in 3+1 dimensions. Phys. Rev. D 108, 2, p. 024041 (2023). arXiv:2304.05329.
  6. L. Pompili, A. Buonanno, H. Estellés, et al. Laying the foundation of the effective-one-body waveform models SEOBNRv5: improved accuracy and efficiency for spinning non-precessing binary black holes. Phys. Rev. D 108, 12, p. 124035 (2023). arXiv:2303.18039.
  7. N. L. Vu, S. Rodriguez, T. Wlodarczyk, et al. High-accuracy numerical models of Brownian thermal noise in thin mirror coatings. Class. Quantum Grav. 40, p. 025015 (2023). arXiv:2111.06893.
  8. K. Mitman, M. Lagos, L. C. Stein, et al. Nonlinearities in black hole ringdowns. Phys. Rev. Lett. 130, 8, p. 081402 (2023). arXiv:2208.07380.
  9. S. Ma, K. Mitman, L. Sun, et al. Quasinormal-mode filters: A new approach to analyze the gravitational-wave ringdown of binary black-hole mergers. Phys. Rev. D 106, 8, p. 084036 (2022). arXiv:2207.10870.
  10. N. L. Vu. A task-based parallel elliptic solver for numerical relativity with discontinuous Galerkin methods. Universität Potsdam:10.25932/publishup-56226 (2022).
  11. N. Deppe, F. Hébert, L. E. Kidder, et al. Simulating magnetized neutron stars with discontinuous Galerkin methods. Phys. Rev. D 105, 12, p. 123031 (2022). arXiv:2109.12033.
  12. L. M. Zertuche, K. Mitman, N. Khera, et al. High Precision Ringdown Modeling: Multimode fits and BMS frames. Phys. Rev. D 105, 10, p. 104015 (2022). arXiv:2110.15922.
  13. S. Ma, Q. Wang, N. Deppe, et al. Gravitational-wave echoes from numerical-relativity waveforms via spacetime construction near merging compact objects. Phys. Rev. D 105, 10, p. 104007 (2022). arXiv:2203.03174.
  14. N. L. Vu, H. P. Pfeiffer, G. S. Bonilla, et al. A scalable elliptic solver with task-based parallelism for the SpECTRE numerical relativity code. Phys. Rev. D 105, 8, p. 084027 (2022). arXiv:2111.06767.
  15. J. Moxon, M. A. Scheel, S. A. Teukolsky, et al. The SpECTRE Cauchy-characteristic evolution system for rapid, precise waveform extraction. Submitted to Phys. Rev. D (2021). arXiv:2110.08635.
  16. N. L. Fischer and H. P. Pfeiffer. Unified discontinuous Galerkin scheme for a large class of elliptic equations. Phys. Rev. D 105, 2, p. 024034 (2022). arXiv:2108.05826.
  17. T. Vincent, H. P. Pfeiffer, and N. L. Fischer. hp-adaptive discontinuous Galerkin solver for elliptic equations in numerical relativity. Phys. Rev. D 100, 8 (2019). arXiv:1907.01572.
  18. M. Boyle, D. Hemberger, D. A. B. Iozzo, et al. The SXS collaboration catalog of binary black hole simulations. Classical and Quantum Gravity 36, 19, p. 195006 (2019). arXiv:1904.04831.
  19. M. Düll, N. L. Fischer, B. M. Schaefer, and F. P. Schuller. Symmetric gravitational closure. arXiv:2003.07109.
  20. V. Kuznetsov, N. L. Fischer, and Y. Guo. The Archive Solution for Distributed Workflow Management Agents of the CMS Experiment at LHC. Computing and Software for Big Science 2, 1 (2018). arXiv:1801.03872.


  1. N. Deppe, W. Throwe, L. E. Kidder, N. L. Vu, F. Hébert, J. Moxon, C. Armaza, G. S. Bonilla, P. Kumar, G. Lovelace, E. O’Shea, H. P. Pfeiffer, M. A. Scheel, S. A. Teukolsky, et al. SpECTRE. sxs-collaboration/spectre. Zenodo:10.5281/zenodo.4290404.
  2. N. L. Vu. dgpy. nilsvu/dgpy. Zenodo:10.5281/zenodo.5086180.
  3. N. L. Vu. gwpv. nilsvu/gwpv.